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Parametric resonance in ideal magnetohydrodynamics
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We show that an external nonelectromagnetic periodic inhomogeneous force sets up a parametric resonance
in an ideal magnetohydrodynamics. Alfven waves with certain wavelengths grow exponentially in amplitude.
Nonlinear interaction between the resonant harmonics produces the long-term modulation of amplitudes. The
mechanism of the energy transformation from an external nonelectromagnetic force to magnetic oscillations of
the system presented here can be used in understanding the physical background of the gravitational action on
the magnetized medium. Future application of this theory to several astrophysical problems is briefly dis-
cussed.

PACS numbds): 52.35.Bj

[. INTRODUCTION magnetized medium is very useful not only in theory, but
also in the astrophysical context.

The stability of open systems is a principal problem in The external nonelectromagnetic periodic action on
any branch of natural sciences. Action of an external forcdlasma may be characterized by the stability of the generated
may create an inhomogeneity in a system and may result iﬁel’iOdiC inhomogeneous motion. Linearized MHD equations
an instability. Therefore, the type of the instability is defineddescribing the stability of such equilibrium flow have both
by the character of the external action. For instance, the exthe spatial and temporal inhomogeneities. For this reason the
ternal force that results in a periodic change of the systenglassical stability theory leads to the set of partial differential
parameter may generate the |nstab|||ty due to the parametrmuat|ons that |nVO|VeS bOth Spatlal and temporal der|Vat|VeS.
resonance. The most famous example of such a process mbipwever, rewriting the equations in comoving coordinates
occur in the system of the mathematical pendulum with pe©f the unperturbed flo7—-26] provides a way of retaining
riodically varying length. The parametric resonance inOnly the temporal inhomogeneity. Consequent Fourier ex-
plasma caused by an external electromagnetic force has beBansion leads to the set with temporal derivatives only. This
studied intensivelysee, e.g.[1,2] and references thergin ~€nables the analytical solution of MHD equations and thus
On the other hand, the investigation of the dynamics of théhe study of the physical background of the external action.
plasma that is externally affected by forces of a nonelectro- As already noted, periodic shear flow intuitively gives rise
magnetic Origin iS not We" deveioped' In the present papeFO the parametl’ic |n5tab|l|ty for magnetic waves. Th|$ iS an-
we study the influence of the external nonelectromagneti@ther way of stating that the external nonelectromagnetic en-
action on the magnetohydrodynanfMHD) system and an- €rgy transforms into the magnetic energy of the system. Re-
ticipate its parametric form. We found that the external force cent studies have revealed many problems in explaining the
which is able to generate a periodic shear motion, could b&agnetic field behavior in the Sun, binary stars, galaxies, etc.
responsible for the amplification of the magnetic fields due td27,28. Therefore, the presented mechanism of the magnetic
a parametric resonance. field amplification may play a significant role in the solution

The externally generated periodic shear motions tak&®f many astrophysical problems. _
place in many astrophysical objects: binary stars, stars with Section Il contains the physical approach and mathemati-
pianetary SystemS, interacting gaiaxieS, etc. Recentiyal formalism Of the problem Considered. Numel’ica| Simula'
Zaqarashvili[3,4] has shown that the gravity of the planets tions and formal nonlinear analysis are outlined in Secs. Il A
results in a weak periodic shear in the internal rotation of theétnd Il B, respectively. Discussion and applications to differ-
Sun. The latter causes the parametric amplification of th&nt astrophysical contextthe Sun, binary stars,spiral galax-
fossil magnetic field and leads to the formation of the solaf€S are presented in Sec. Ill.
cycles. Another example is the density waves in spiral gal-
axies that have been considered as an origin of the periodic
change in the differential rotatiofb,6], which sets up the

resonance in the turbulent dynamo theory. At the same time, To get a better insight into the nature of the parametric
it appears that the consideration of the spiral density wavegesonance in the ideal MHD we consider a boundary-free,
(originated from the gravitational and rotational actibas  homogeneous, magnetized medium. The medium considered
an external force in the parametric form in the ideal MHD s stable in the absence of an external action. However, this
equations likely leads again to the parametric resonance fahedium may became unstable when affected by an external

Alfven waves. In this case it turns out that the influence offorce. Formally, the ideal MHD equations read as follows:
one type of wavedensity waveson anothelAlfven waves

may be studied in the linear approximation, despite of its
nonlinear character. In general, the investigation of the phys- @ —Vx(VXB) 1)
ics of the external nonelectromagnetic periodic action on at '

Il. MATHEMATICAL FORMALISM
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V-B=0, modal theory leads to the set of partial differential equations,
which includes both spatial and temporal derivatives. Inves-
1 tigation of such a system is a complicated matter. However,
== Vp+ ;- (VXB)XB+F(r,1), Egs.(9)—(12) retain only the temporal inhomogeneity in the
2) comoving coordinates of the unperturbed flow,

oV
—+(V~V)V)

Pl ot

v-v=0, © X=X+ %cos{wot)y, Vi=Y, z1=2, t;=t. (13
0

where p is the plasma densityp is the pressurey is the
Ve|ocity, B is the magnetic field, anﬂ:(r’t) is an external Then the Fourier expansion with respect to the Spatial coor-
force of a nonelectromagnetic origin. For simplicity we as-dinates is possible,
sume the incompressibility= const.
The X axis of the frame is directed along the unperturbed &' :J' dky, dky, dky, ¢k Ky Kz, t1)
magnetic field, e !

B=(Bqg00). 4) Xexfi(ke, X1t Ky y1tkz z1)]. (14

For simplicity the external force is directed along the mag-Consequently, one can obtain the system with the time de-
netic field and is linearly innomogeneous along thaxis rivatives only,

F=(a Coiwot)y,0,0), (5) [;Tby:iBkaluy: (15)

1

were wo=2m/tq is the frequency of the external force. This
action generates the periodic shear motion of plasma along b,
the magnetic field lines having no effect on the field lines mlekaluz- (16)

themselves. The velocity field of the generated flow takes the

following form in the case of the homogeneous unperturbed o
pressure: Ky1by+ | Kyp+ Wcos(wotl)kx1 by+k,b,=0, (17)
0
V0= (nyyy 010)1 (6) . .
dUy I iBg
where E == ’_)kxlp"_ 4mp I(xlbx_vxyuy: (18)
o . .
Vig(t)= ——sin(wot). () My T, @ 1Bo
pwo (9'[1 P ky1+pwg COS(thl)kxl P+ 47Tp kxlby-
We use the linear perturbation theory to investigate the (19
stability of such flow. All physical quantities are presented as au i B
the sum of the equilibrium and perturbed components, le: - ;kzlp+ ﬁkxlbzv (20)
b=dot ¢ ()
o
Then the linearization of Eq$1)—(3) leads to the following KyaUy+ ky1+p7005(wot1)kx1 uy+Kkz1u,=0, (21)
0

system:

J whereP=p+Bgyb,/47. The systen(15)—(21) describes the

—+(VO-V)}B’ =(By-V)V'+(B'-V)V,, (9) evolution of the amplitudes of Fourier harmonics introduced

ot in Eq. (14). The wave numbers of the Fourier harmonics in
the initial frame can be derived from Eq4.3) and(14),

V-B'=0, (10
o
J VP’ (By-V)B’ Ky=Kx1, Ky=ky1+—2005(w0tl)kxl, K=Kz
_+(VOV) V'i=— + _(V,'V)Vo, PwWqo
ot p 4mp (22)
11

Note that the wave number along the shear #&Xjsis the
V-V'=0, (12)  periodic function of time.
) In the absence of the medequilibrium) flow V, and
whereP’=p’ +(BoB’)/4m, V, is the unperturbed flow ve- pressure perturbatiop, Egs. (15—(21) describe the evolu-

locity, andB, is the unperturbed magnetic field. The externaltion of classical Alfven waves, which satisfy the conditions
force is not explicitly included in this system. It emerges in

the expression of the unperturbed flg8). Such behavior is (B'Bg)=0, (V'Bg)=0. (23
typical for the parametric action. R

The set of equation®)—(12) has both spatial and tempo- However, the retention of pressure perturbatipns Egs.
ral inhomogeneities due to E@6). Therefore, the normal (15)—(21) disrupts the condition$23). In addition, the un-
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perturbed flow(6) disrupts again the condition®3) and  where
leads to the emergence of another type of wave. Therefore,

we argue that not only the classical Alfven waves, but also

slow MHD waves are described by Eq$5)—(21). Eliminat-

ing P,b,,v, in Egs.(15—(21), we obtain the following sys-

Ca Kk
L ke + Ko+ kS

tem: This equation is well known in the theoretical mechanics and
ob, governs oscillations of a mathematical pendulum with a pe-
=iBokyUy, (24) r!odlcally varying length. W'hen .the frequency of the.varla-
3 tion of the eigenfrequency is twice as large as the eigenfre-
quency of the pendulum itself, then the oscillations grow in
b, z_iB K,u (25) amplitude exponentially. In the case of a magnetized me-
at 0Tz dium, there are many wave modes with different frequencies
and wave numbers satisfying the dispersion relation. The
duy IBok 2Vyy kiKy harmonics falling in resonance with the external force grow
gt dmp Y k2+ K + k2 Uy, (26) in amplitudes. Therefore the resonant conditions are imposed
on the wave numbers. The main resonance in(&2).occurs
du, iBgky 2V, Kk, when
T T 22,24y (27)
TP K+ KJ+K; B
xBo  @Wo
Alfven and slow MHD waves may be distinguished by their 47Tp: o (33

polarization. Alfven waves are polarized in the plane normal
to the unperturbed magnetic field and wave vector, |e
(kB")=0, (B'Bg)=0. On the other hand, slow MHD waves
are polarized in any plane satisfying the conditiorieB ()
=0, (kV')=0. These different polarizations allow the sepa-
ration of the solutions for Alfven and slow MHD waves.
However, these waves acquire properties different from the
classical ones in periodic shear flows.

The following two second-order differential equations can

, the external energy transforms into the energy of the
harmonlcs withk, . The width of the resonant interval may
be expressed as folloWg9]:

k«Bo Y

(,L)Ol

o

(34)

47p 2

be obtained from the syste(@4)—(27):

2
b,
at?

2V, keKy by
kZ+KI+ks ot

o
4ap Y 0.

(28)

b,
at?

k2B2 _2Vykik, db,
dap 7 KGHKGHKE ot

(29)
Using the substitution

by=by(1) ex;“ ka2+K2+k2dt)

Eq. (28) leads to the Hill's equation:

-
7*b,
at®

SER
A7p

kK yVyy
K+ K+ kS

Ky Vi Ky
kZ+ K+ kS

VZKEK?Z
(k2+K +k2)?

b,= (30

The resonant solution of Eq32) may be obtained in the
following analytical form[29]:

Y wo . Wo
b boex;{z 0 cos7t—sm7t}
w a
— \/Eboe(V/Zwot) Co{ft-f— Z , (35)

where bo=6y(0). This solution describes the evolution of
the amplitudes of the Alfven waves polarized in tH8Z
plane with the initial conditionb,=0, i.e., Ky(0)by(0)
+k,b,(0)=0, and slow MHD waves polarized in any plane
satisfying the conditiot,b,(0)+K,(0)b,(0)+k,b,(0)=0.

The waves withK, (0)~k,>k, have maximal growth rates.
The waves change the polarization due to the temporal be-
havior of the wave vecto{22). It generates th& component

of the Alfven waves and breaks down the classical condition
(B'Bp)=0. Two main reasons may be responsible for this
process: either Alfven waves lose their classical properties in
the periodic shear flows or they are partially turned into the

Analytical study of this equation can be simplified using theslow MHD waves.

assumption of the weak inhomogeneity of the external force:

a<pwé. (31

Then the Hill type equatiori30) turns into the equation of

Mathieu,

b, [KiB§
=0, (32

W'ﬁ‘ ﬂ"r‘ ’)’COSth)

Equations(34) and (35) show that the width of the reso-
nant interval and the growth rate of the resonant waves de-
pend on the shear rate of the velocity flow generated by
the external action. It has been known from the theory of
mathematical pendulum that parametric resonance takes
place near the frequenciessy/2. However, the growth rate

is maximal atn=1 and decreases quickly with the increase
of n. Therefore, only the harmonics with frequeneay/2
have significant growth rates.



2748 T. V. ZAQARASHVILI PRE 62

Analytical solution(35) was found for the weakly inho- 4 47
mogeneous external force. However, it is necessary to pro
vide the numerical simulation of the systei@4)—(27) for 2 21
arbitrary shear rates. o
g o @ 0
£ -nh
A. Numerical simulation 5 5
For the purpose of simplification of the numerical analy-
sis, it is convenient to work with the dimensionless equa- -4 — -4 —
tions. Variables and functions have been made dimensionles B R e e e 04 Byl D
0
as follows:
by b b, iUyt iuyto
blz—’ sz_y, b3E_1 V1= , Vo= Y , 05 ~ 15 4
Bo Bo Bo Ro Ro
0s 12 4
iuZtO 9 4
ng A Vlenyth k]_Ekao, kZEkyROI 00 4 °
RO s ]
B m 67
BO 0319 3 A
kSE kZRO! ’TEt/to, wEwoto, VAE—,
\ 4’7Tp -0.5 T T T T 1 0 T T T T 1
0 8 12 16 20 0 4 g 12 16 20
thto tto
atcz)
Ro=Vaty, a=—, (39 FIG. 1. Temporal evolution of the velocity and magnetic field
Po components and the normalized total energy of resonant Alfven
_ ) waves. Time is normalized by the period of the external adtjoft
wheret, is the period of an external force. is clearly seen that the period of waves is twice as largg.dsote

By assigning the corresponding initial polarization onethe generation of th& component of the perturbations which was
can look for the solutions of the Alfven and slow MHD absent at the initial stage. Here,=3.14,K,(0)=3.3, kg=—1.1,
waves separately. We suppose that initially Alfven waves are=0.6, E,=B3/47.
polarized in theY0Z plane and slow waves are polarized
near theX0Y plane. whereEy= 83/477, the first is the kinetic term and the second

Temporal evolution of components and total energy ofis the magnetic one. As is seen on the plot, the energy of the
resonant Alfven waves is presented in Fig. 1 for the smalperturbations is exponentially growing. Consequently, it is
shear rate of the external action. The initial conditions are safe to say that perturbations take the energy from the back-

ground flow or, more properly, energy of the external force
b;(0)=0, b,(0)=0.1, bs(0)=0.3, v4(0)=0, transforms into the magnetic energy of the system.
Figure 2 illustrates the resonant solutions of the slow
v,(0)=—0.1, v5(0)=—0.3. MHD waves for the same shear rate as in Fig. 1. The initial
conditions are

Initially, Alfven waves are polarlzed. in the0Z pla_ne. Itis by(0)=—0.063, b,(0)=0.1, by(0)=3,

clearly seen that resonant harmonics have periods that are

twice as large as the period of the external action. Thls flgure v1(0)=0.06, v,(0)=—0.1, v4(0)=—3.

illustrates that theY component of the magnetic field is

growing exponentially, whereas th2 component is not. The properties of slow waves are the same as the Alfven
Note that the longitudinak component is generated after the ones despite the fact that the polarization does not change the
initial phase. It is exponentially growing and breaks downplane during the wave evolution.

the classical properties of the Alfven wavd® By)=0. As a To gain a complete understanding of the external action it
consequence, the polarization plane turns towards the dire¢s useful to conduct the numerical simulations for the larger
tion of the XOY plane. As already noted, two possibilities shear ratex. Figures 3 and 4 show the solutions for the
may cause this process: either Alfven waves lose their clasalfven and slow waves in the case whenis three times
sical properties or they partially transform into the slowlarger compared to Figs. 1 and 2. The initial conditions are
MHD waves in the forced medium. Consideration of the

compressibility will offer a clearer view on the understand- b1(0)=0, by(0)=0.1, b3(0)=0.3, v4(0)=0,
ing of this process. The normalized total spectral energy of
the resonant harmonics in thespace is calculated using the v2(0)=-0.1, v3(0)=-0.3

following equation: for Fig. 3 and

E_1 b1(0)=0.92, by(0)=0.1, bs(0)=3
£ = 3o+ loal+[od2)+ ([l baf?+ o), {07092, BAO=0.4 B(0)=3,

(37) v1(0)=-0.92, v,(0)=-0.1, v3(0)=—3
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° ‘o FIG. 4. Temporal evolution of the velocity and magnetic field

FIG. 2. Temporal evolution of the velocity and magnetic field components and the normalized total energy of resonant slow MHD
components and the normalized total energy of resonant slow MHIwWaves for the larger shear rate. Hekg=3.14, K(0)=5.9, k3
waves. They behave similarly to the Alfven waves. Hekg, =—1.3,a=1.8, Eq=B}/4m.
=3.14,K,(0)=5.3,ky=—0.11,a=0.6, Eq=B3/4.

quently nonlinear interaction cannot be neglected after a
for Fig. 4. Referring to these figures, the shear rate is a ver{pPSe of time. The study of the complete nonlinear dynamics
sensitive parameter for the resonance: the waves undergo the (€ parametric resonance is an intricate problem. Hence,
strongest amplification in comparison to the above cases. W€ Provide only a formal nonlinear analysis and anticipate

Analytical and numerical study in the linear approxima- fUrther development in the future.
tion gives indications of the parametric resonance for the
Alfven and slow MHD waves due to the external action. B. Formal nonlinear analysis
Resonant harmonics grow eXponentia”y in time, and conse- The properties of nonlinear MHD waves have been stud-
ied intensively [30—33. Generally, nonlinear interaction
generates the second and higher harmonics and leads to the

0 4 400 frequency change of the initial resonant waves. Conse-
quently, the harmonics are forced out from resonance. There-
200 1 . .
& o fore, the amplitudes of the resonant waves decrease, which
a ef 0 - means that there is a redistribution of the energy of the reso-
a0 4 ° 0 | nant harmonics to the higher ones. As a result the frequency
of resonant waves in E¢32) becomes amplitude dependent,

o 4 8 1 1 B o 4 & 1 1 2 Viki—>Vik§(l+,8b)2,), (38
6

thy t

200 - 800000 -
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600000 -
0 4 o
2 400000 -
.lw_
200000
_zm |
300 0

0 4 8 12 16 2:3 0 4 8 12 1
o o Introducing the new functiol'=db, /t, Eq.(39) may be
FIG. 3. Temporal evolution of the velocity and magnetic field €xPressed in the form of the following two differential equa-
components and the normalized total energy of resonant AlfvedlONS:
waves for the larger shear rate. Hekg=3.14, K,(0)=3.9, ks
=-1.3,a=1.8, E0=B§/4Tr. The strongest growth of the ampli- —V (40)
tudes is clearly seen. ot '

where B is the coefficient of nonlinearity. This additional
term introduces a nonlinear term of the Salinger equation
type in the Eq(32). Using this formal substitution Mathieu’s
equation (32), which governs the linear parametric reso-
nance, leads to the equation governing the nonlinear dynam-
ics of the system,

bz/Bo

(92by 21,2 2
—2 HIVAK(1+ Bb)) + y cod wot) 10, =0. (39
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2 8 -

ﬂ:__o 1+4ycos{w t)|b —ﬁﬁbs (41
ot 4 Eg 0 y 4 Y

We look for the solution of the systefd0) and (41) in the
following form: 4

w
by=2A(t)Co{7ot+ Mt)}. (42)
Substitution of Eq(42) into Eq. (40) leads to the following = °7
equation: e

wqo .
—+
2 (P

. | Wo
sin —

2 o
(43

. (OFs)
2A co 7t+<p(t) —2A

t+ @(t)} =V.

Equation(42) substitutes the two variables and ¢. Thus
one can choose an arbitrary relation between these new var

ables. For simplicity we consider the following relation: -8 . . . .
¢ 40 80 120 160
tity
Acod i+ o(t) |~ Apsin i+ o(t)|=0.  (44)
2 ¢ ¢ 2 ¢ ' FIG. 5. Nonlinear modulation of the resonant Alfven waves am-

plitudes. The period of the modulation is much larger than the pe-
Then the expression for takes the form riod of the resonant waves. Her@B3=0.005, y/ w3=0.05,V(0)
=0, by(0)/By=0.05.
@o

V=—Awg sir{ 5 t+ go(t)}. (45)

Hence we can imagine the process of the external action:
the force strengthens certain harmonics with appropriate
Substitution of Eq(45) into Eq. (41) and consequent aver- wavelengths at the initial linear stage. When amplitudes of
aging over the period leads to the following equations for thehe harmonics reach the high values, the nonlinear interac-
amplitude and phase: tion turns on and leads to the redistribution of the energy

from the resonant harmonics to the higher frequency ones.
LAsin 2 Consequently, amplitudes of the resonant harmonics are de-
©, (46) . . . .
2w creased, creating again the conditions for the linear paramet-
ric action. As a result, the repetitive amplification of the per-
. 3Bwy , YV turbations leads to the long-term modulation of their
p=—7 A +2_w05'n 2¢. (47)  amplitudes. An explicit example of this process is the non-
linear oscillation of the mathematical pendulum with periodi-
Hence, integration of Eq46) allows us to get the following cally varying lengths in theoretical mechanics. This mecha-
equation for the amplitude: nism may be responsible for the explanation of the Maunder

minimum in the solar activity.
Y .
A= — 2
Cexp( ZwOJ sin 2pdt

whereC is a certain constant of integration. This equation Recently observed uncertainties of the magnetic field be-
indicates that the amplitude of a resonant harmonic undetavior in the Sun, binary stars, and galaxies set a stage for
goes periodical growth and decay due to the nonlinear intermodifying the classical dynamo theory or developing new
action, which is expressed by the first term on the right-handheories. The bisymmetric structure of galactic magnetic
side of Eq.(47). The rate and the period of the amplitude fields that closely follow spiral arms cannot be explained by
variation depend ory, the coefficient of nonlinearityg, and  classical turbulent dynamo theory. Therefore, an explanation
the initial amplitude of the magnetic field. of observations necessitates the consideration of density
The numerical solution of the differential equatio@®) waves[5,6]. These waves may be coupled with dynamo ones
and(41) is presented in Fig. 5 with the following conditions: if their frequencies satisfy the relation=2L. However, this
condition will only be satisfied fortuitously34]. Further-
by(0) —005 more, the turbulent dynamo theory encounters problems try-
Bo ing to explain the solar magnetic cyclg28]. The different
character of the magnetic fields in binary stars also demands
Time is normalized by the period of the external fotge  further investigatiorj27]. As a consequence, an explanation
Further inspection of Fig. 5 shows that the period of theof the magnetic field behavior in many astrophysical objects
amplitude variation is much larger than the period of therequires an overview of the amplification process.
resonant waves. The energy supply for the magnetic field in the classical

A:

: (48)

Ill. DISCUSSION

Y
BB2%=0.005, s =0.05, V(0)=0,
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dynamo theory is the energy of the turbulent motion in dif-than the period of the resonant harmonics and depends on the
ferentially rotating objects. However, the role of externalvelocity shear rate generated by the external force and the
sources in the magnetic field amplification process is notoefficient of the nonlinearitysee Fig. 5.
completely understood. The mechanism of magnetic field amplification presented
An influence of an external electromagnetic force onhere may be applied to many astrophysical objects. We
plasma has been studied extensiviely. A question arises: present several examples of external action, which can gen-
what happens if a nonelectromagnetic external action takesrate parametric resonance.
place? It is obvious that a nonelectromagnetic force cannot
directly affect magnetic waves. However, indirect influence
may be assumed in the form of a parametric action. A. The Sun
The nonelectromagnetic inhomogeneous periodic force It has been shown that gravitational action of the planets
directed along the magnetic field produces periodical sheatorrelates with the solar activity cycl¢35]. However, there
motions of plasma leaving field lines unaltered. The stabilitywas no physical mechanism explaining such correlation. Re-
of such plasma is studied in the present paper. MHD equeeently, Zagarashvili3] has shown that in the case of ellipti-
tions, written in the comoving coordinates of the unperturbectal motion of the Sun about the mass center of the solar
flow, lead to the Hill's equation for an incompressible me-system(which is the result of the planetary gravitynonin-
dium. In case of the weakly inhomogeneous external actiogtial force pr x € influences the solar plasma. Angular ve-
the Hill's equation tumns into the Mathieu's equati®®2), acity () is the periodic function of time for eccentric orbits.
which describes the parametric resonance in the theoreticgherefore, this force is periodic and inhomogeneous. Hence
physics. As expected intuitively, periodical variation of the it generates periodic shear of the solar internal rotation with
velocity shear generates the Alfven waves with exponentiallfhe period of~11 years(it corresponds to the period of
growing amplitudes. Contrary to a single mathematical penyypiter, which is the biggest planet in the solar system
dulum, there are many wave modes in the plasma with difthen, the parametric amplification of Alfven waves with the
ferent frequencies and wavelengths satisfying the dispersioferiod of 22 years occurs in the solar interior. This result is
relation of Alfven waves. As derived in E¢B2), parametric  yery intriguing because the solar magnetic field actually has
resonance requires the condition the same period. Nonlinear long-term modulation of ampli-
tudes found in the present paper may be responsible for the
generation of the Maunder minimum in the solar magnetic
Vamp 2 ' activity. This theory may be used in searching for extrasolar
planets as well: if a star exhibits a periodical variation in its
This equation expresses the fact that the period of the reseghromospheric activity then one can suggest the existence of
nant harmonics is twice as large as the period of the externahe planet with the same orbital period.
action. As a result, only harmonics with certain wavelengths
satisfy the resonant conditions. To put it differently, the ex- B. Binary stars
ternal force transmits the energy to the selected harmonics.
Amplitudes of these harmonics grow exponentially in time
(see Figs. 1-¥ The growth rate and the resonant interval
depend on the velocity shear rate generated by the extern
action.

kBo g

Several years ago, Schrijver and Zwd&] have shown
based on the observational data that the chromospheric ac-
tiYity in binary systems is substantially higher in comparison
B the single stars of the same spectral classes and rotation
periods. They have concluded that gravity of a companion
degi:slriaggriggidd'ritheikwsapV;ce\z/eZtso;OrfesAJ];}[/etTneWSL 9;11 lg? affects the differential rotation of a.p.rimary star and may be

: ’ responsible for a so-called overactivity. However, they have

the polarization undergoes a periodical variation which gen. proposed any physical mechanism explaining the

erates the longitudinal component perturbing the classic . I . i
condition (B'B,) =0. Two main mechanisms can be responiagtrengthen|ng of the magnetic field. In this regard the para

sible for this phenomenon: either Alfven waves are modifieog]etri(.: resonance presented ir! this baper offers the greatest
in the forcedpmedium or t.he artially transform into slow romise. An_y I|t_tle asymmetry in a blqary syste(m:centrlq
MHD waves. We cannot preer%ne ofythese two possibilitiesOrblt or |ncI|nat!on of the rqtanon ax)scause; a p_enodlc
. . : . S : shearing of the internal rotation and thus amplification of the
in an incompressible limit. It requires a study of a compress- D
. : magnetic field.
ible medium.

The exponential growth of wave amplitudes indicates that
the linear approximation loses its validity soon. Then a for-
mal non-linear analysis shows periodical growth and decay It seems reasonable to expect that the parametric amplifi-
of the resonant harmonics. This amplitude modulation is aation of the magnetic field can occur in interacting galaxies.
result of the nonlinear interaction between resonant harmoriFhis suggestion is supported by the observed fact that inter-
ics that produces overtones of a second and higher ordeacting galaxies exhibit rather strong magnetic fi¢R5—39.
2w,3w, . ... As aresult, the energy of the resonant harmon-However, uncertainties in the measurements of the orbital
ics is redistributed between the energies of higher-order haparameters complicate the evaluation of the growth rate of
monics. Consequently, amplitudes of the resonant harmoniasagnetic fields. On the other hand, magnetic field amplifica-
are reduced. They became smaller and the linear mechanisiion may occur at the expense of density waves in spiral
of parametric amplification turns on again and leads to thejalaxies. Density waves that propagate in spiral galaxies pro-
perturbation growth. The period of the modulation is largerduce a periodic shear in the galactic rotation because of the

C. Galaxies
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angular momentum transfer. Considering the spiral density IV. CONCLUSION

waves as an external force which produces periodic shear

motions, one can find the parametric amplification of Alfven A mechanism of a magnetic field amplification is outlined
waves. In other words, we can consider the density waveand discussed within the ideal MHD theory. It is shown that
which is a consequence of gravitational and rotational acan external nonelectromagnetic inhomogeneous periodic
tions, in a parametric form in ideal MHD equations. As aforce is able to generate resonant Alfven waves in a magne-
result, Alfven waves grow exponentially. It can be said withtjzed medium. During the process of the parametric reso-
ponfidence that the energy of density waves is transformefgnce energy of the external nonelectromagnetic driving
into the energy of Alfven waves. In other words, waves Of¢y e transforms to the energy of the generated Alfven wave
one type change the properties of a medium and offer a chag, iy onics with definite wavelengths. The period of the reso-
nel for the transmission of energy to the waves of anotheham harmonic is twice as large as the period of the external

type. Indeed, th|§ phenomenon may _be_ dt_asc_rlbed n th'faorce. The growth rate of the Alfven waves depends on the
framework of the linear theory, despite its intrinsic nonlinear . . .
shear rate of the flow velocity, which originates from the

character. We believe in the development of this method in ¢ | acti Furth th i int tion b
the future. Let us evaluate the growth rate of perturbations iF X ernah action. Fur hermorg, € r(;on me;ar Interac |ond f'
this case. Density waves cause the following shear in théWeen the resonant harmonics produces long-term modula-

rotation of the galaxies: tion of their amplitudes. . .
The presented mechanism of energy transformation from

@ an external nonelectromagnetic force into magnetic oscilla-

Vi=——sin(ogl)y, tions of the system can be used in the understanding of the
p@d physical basis of gravitational action on a magnetized me-

where wg and « are the frequency and the Strength of thedium. The possible application of this mechanism in the ex-

density waves. Th& axis is directed along the rotation of Planation of the magnetic field behavior in the Sun, binary

the galaxy and the axis has radial direction. The growth stars, and spiral galaxies is briefly discussed.

rate depends on the amp”tude of density waves. The period Future consideration of the ComprESSibi”ty will prOVide a

of density waves is considered to be equal to the period ofore detailed insight into the nature of this phenomenon.

the galactic rotatio39]. Taking a/p~ w3 during the life-

time of the Milky Way, which corresponds te50 rotations,

amplitudes of the Alfven waves are amplified by the follow- ACKNOWLEDGMENTS
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