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Parametric resonance in ideal magnetohydrodynamics

T. V. Zaqarashvili
Abastumani Astrophysical Observatory, Alexander Kazbegi Avenue 2a, Tbilisi 380060, Georgia

~Received 14 June 1999; revised manuscript received 4 January 2000!

We show that an external nonelectromagnetic periodic inhomogeneous force sets up a parametric resonance
in an ideal magnetohydrodynamics. Alfven waves with certain wavelengths grow exponentially in amplitude.
Nonlinear interaction between the resonant harmonics produces the long-term modulation of amplitudes. The
mechanism of the energy transformation from an external nonelectromagnetic force to magnetic oscillations of
the system presented here can be used in understanding the physical background of the gravitational action on
the magnetized medium. Future application of this theory to several astrophysical problems is briefly dis-
cussed.

PACS number~s!: 52.35.Bj
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I. INTRODUCTION

The stability of open systems is a principal problem
any branch of natural sciences. Action of an external fo
may create an inhomogeneity in a system and may resu
an instability. Therefore, the type of the instability is defin
by the character of the external action. For instance, the
ternal force that results in a periodic change of the sys
parameter may generate the instability due to the param
resonance. The most famous example of such a process
occur in the system of the mathematical pendulum with
riodically varying length. The parametric resonance
plasma caused by an external electromagnetic force has
studied intensively~see, e.g.,@1,2# and references therein!.
On the other hand, the investigation of the dynamics of
plasma that is externally affected by forces of a nonelec
magnetic origin is not well developed. In the present pa
we study the influence of the external nonelectromagn
action on the magnetohydrodynamic~MHD! system and an-
ticipate its parametric form. We found that the external for
which is able to generate a periodic shear motion, could
responsible for the amplification of the magnetic fields due
a parametric resonance.

The externally generated periodic shear motions t
place in many astrophysical objects: binary stars, stars w
planetary systems, interacting galaxies, etc. Rece
Zaqarashvili@3,4# has shown that the gravity of the plane
results in a weak periodic shear in the internal rotation of
Sun. The latter causes the parametric amplification of
fossil magnetic field and leads to the formation of the so
cycles. Another example is the density waves in spiral g
axies that have been considered as an origin of the peri
change in the differential rotation@5,6#, which sets up the
resonance in the turbulent dynamo theory. At the same ti
it appears that the consideration of the spiral density wa
~originated from the gravitational and rotational actions! as
an external force in the parametric form in the ideal MH
equations likely leads again to the parametric resonance
Alfven waves. In this case it turns out that the influence
one type of wave~density waves! on another~Alfven waves!
may be studied in the linear approximation, despite of
nonlinear character. In general, the investigation of the ph
ics of the external nonelectromagnetic periodic action
PRE 621063-651X/2000/62~2!/2745~9!/$15.00
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magnetized medium is very useful not only in theory, b
also in the astrophysical context.

The external nonelectromagnetic periodic action
plasma may be characterized by the stability of the gener
periodic inhomogeneous motion. Linearized MHD equatio
describing the stability of such equilibrium flow have bo
the spatial and temporal inhomogeneities. For this reason
classical stability theory leads to the set of partial differen
equations that involves both spatial and temporal derivativ
However, rewriting the equations in comoving coordina
of the unperturbed flow@7–26# provides a way of retaining
only the temporal inhomogeneity. Consequent Fourier
pansion leads to the set with temporal derivatives only. T
enables the analytical solution of MHD equations and th
the study of the physical background of the external acti

As already noted, periodic shear flow intuitively gives ri
to the parametric instability for magnetic waves. This is a
other way of stating that the external nonelectromagnetic
ergy transforms into the magnetic energy of the system.
cent studies have revealed many problems in explaining
magnetic field behavior in the Sun, binary stars, galaxies,
@27,28#. Therefore, the presented mechanism of the magn
field amplification may play a significant role in the solutio
of many astrophysical problems.

Section II contains the physical approach and mathem
cal formalism of the problem considered. Numerical simu
tions and formal nonlinear analysis are outlined in Secs. I
and II B, respectively. Discussion and applications to diff
ent astrophysical contexts~the Sun, binary stars,spiral galax
ies! are presented in Sec. III.

II. MATHEMATICAL FORMALISM

To get a better insight into the nature of the parame
resonance in the ideal MHD we consider a boundary-fr
homogeneous, magnetized medium. The medium consid
is stable in the absence of an external action. However,
medium may became unstable when affected by an exte
force. Formally, the ideal MHD equations read as follows

]B

]t
5“3~V3B!, ~1!
2745 ©2000 The American Physical Society
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“•B50,

rS ]V

]t
1~V•“ !VD52“p1

1

4p
~“3B!3B1F~r ,t !,

~2!

“•V50, ~3!

where r is the plasma density,p is the pressure,V is the
velocity, B is the magnetic field, andF(r ,t) is an external
force of a nonelectromagnetic origin. For simplicity we a
sume the incompressibilityr5const.

The X axis of the frame is directed along the unperturb
magnetic field,

B5~B0,0,0!. ~4!

For simplicity the external force is directed along the ma
netic field and is linearly inhomogeneous along theY axis

F5„a cos~v0t !y,0,0…, ~5!

werev052p/t0 is the frequency of the external force. Th
action generates the periodic shear motion of plasma a
the magnetic field lines having no effect on the field lin
themselves. The velocity field of the generated flow takes
following form in the case of the homogeneous unperturb
pressure:

V05„Vxyy,0,0…, ~6!

where

Vxy~ t !5
a

rv0
sin~v0t !. ~7!

We use the linear perturbation theory to investigate
stability of such flow. All physical quantities are presented
the sum of the equilibrium and perturbed components,

f5f01f8. ~8!

Then the linearization of Eqs.~1!–~3! leads to the following
system:

F ]

]t
1~V0•“ !GB85~B0•“ !V81~B8•“ !V0 , ~9!

“•B850, ~10!

F ]

]t
1~V0•“ !GV852

“P8

r
1

~B0•“ !B8

4pr
2~V8•“ !V0 ,

~11!

“•V850, ~12!

whereP85p81(B0B8)/4p, V0 is the unperturbed flow ve
locity, andB0 is the unperturbed magnetic field. The extern
force is not explicitly included in this system. It emerges
the expression of the unperturbed flow~6!. Such behavior is
typical for the parametric action.

The set of equations~9!–~12! has both spatial and tempo
ral inhomogeneities due to Eq.~6!. Therefore, the norma
-

d

-

ng

e
d

e
s

l

modal theory leads to the set of partial differential equatio
which includes both spatial and temporal derivatives. Inv
tigation of such a system is a complicated matter. Howev
Eqs.~9!–~12! retain only the temporal inhomogeneity in th
comoving coordinates of the unperturbed flow,

x15x1
a

rv0
2 cos~v0t !y, y15y, z15z, t15t. ~13!

Then the Fourier expansion with respect to the spatial co
dinates is possible,

f85E dkx1
dky1

dkz1
f~kx1

,ky1
,kz1

,t1!

3exp@ i ~kx1
x11ky1

y11kz1
z1!#. ~14!

Consequently, one can obtain the system with the time
rivatives only,

]by

]t1
5 iB0kx1uy , ~15!

]bz

]t1
5 iB0kx1uz , ~16!

kx1bx1Fky11
a

rv0
2 cos~v0t1!kx1Gby1kz1bz50, ~17!

]ux

]t1
52

i

r
kx1P1

iB0

4pr
kx1bx2Vxyuy , ~18!

]uy

]t1
52

i

r Fky11
a

rv0
2 cos~v0t1!kx1GP1

iB0

4pr
kx1by ,

~19!

]uz

]t1
52

i

r
kz1P1

iB0

4pr
kx1bz , ~20!

kx1ux1Fky11
a

rv0
2 cos~v0t1!kx1Guy1kz1uz50, ~21!

whereP5p1B0bx/4p. The system~15!–~21! describes the
evolution of the amplitudes of Fourier harmonics introduc
in Eq. ~14!. The wave numbers of the Fourier harmonics
the initial frame can be derived from Eqs.~13! and ~14!,

kx5kx1 , Ky5ky11
a

rv0
2 cos~v0t1!kx1 , kz5kz1 .

~22!

Note that the wave number along the shear axis~Y! is the
periodic function of time.

In the absence of the mean~equilibrium! flow Vx and
pressure perturbationp, Eqs. ~15!–~21! describe the evolu-
tion of classical Alfven waves, which satisfy the condition

~B8B0!50, ~V8B0!50. ~23!

However, the retention of pressure perturbationsp̂ in Eqs.
~15!–~21! disrupts the conditions~23!. In addition, the un-
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PRE 62 2747PARAMETRIC RESONANCE IN IDEAL . . .
perturbed flow~6! disrupts again the conditions~23! and
leads to the emergence of another type of wave. Theref
we argue that not only the classical Alfven waves, but a
slow MHD waves are described by Eqs.~15!–~21!. Eliminat-
ing P,bx ,vx in Eqs.~15!–~21!, we obtain the following sys-
tem:

]by

]t
5 iB0kxuy , ~24!

]bz

]t
5 iB0kxuz , ~25!

]uy

]t
5

iB0kx

4pr
by1

2Vxy kxKy

kx
21Ky

21kz
2 uy , ~26!

]uz

]t
5

iB0kx

4pr
bz1

2Vxy kxkz

kx
21Ky

21kz
2 uy . ~27!

Alfven and slow MHD waves may be distinguished by th
polarization. Alfven waves are polarized in the plane norm
to the unperturbed magnetic field and wave vector, i
(kB8)50, (B8B0)50. On the other hand, slow MHD wave
are polarized in any plane satisfying the conditions: (kB8)
50, (kV 8)50. These different polarizations allow the sep
ration of the solutions for Alfven and slow MHD wave
However, these waves acquire properties different from
classical ones in periodic shear flows.

The following two second-order differential equations c
be obtained from the system~24!–~27!:

]2by

]t2 2
2VxykxKy

kx
21Ky

21kz
2

]by

]t
1

kx
2B0

2

4pr
by50, ~28!

]2bz

]t2 1
kx

2B0
2

4pr
bz5

2Vxykxkz

kx
21ky

21kz
2

]by

]t
. ~29!

Using the substitution

by5b̂y~ t !expS E Vxy

kxKy

kx
21Ky

21kz
2 dtD ,

Eq. ~28! leads to the Hill’s equation:

]2b̂y

]t2 1F kx
2B0

2

4pr
1

kxKyV̇xy

kx
21Ky

21kz
2 1

kxVxyK̇y

kx
21Ky

21kz
2

1
Vxy

2 kx
2Ky

2

~kx
21Ky

21kz
2!2G b̂y50. ~30!

Analytical study of this equation can be simplified using t
assumption of the weak inhomogeneity of the external for

a!rv0
2 . ~31!

Then the Hill type equation~30! turns into the equation o
Mathieu,

]2b̂y

]t2 1Fkx
2B0

2

4pr
1g cos~v0t !G b̂y50, ~32!
re,
o

l
.,

-

e

:

where

g5
a

r

kxky

kx
21ky

21kz
2 .

This equation is well known in the theoretical mechanics a
governs oscillations of a mathematical pendulum with a
riodically varying length. When the frequency of the vari
tion of the eigenfrequency is twice as large as the eigen
quency of the pendulum itself, then the oscillations grow
amplitude exponentially. In the case of a magnetized m
dium, there are many wave modes with different frequenc
and wave numbers satisfying the dispersion relation. T
harmonics falling in resonance with the external force gr
in amplitudes. Therefore the resonant conditions are impo
on the wave numbers. The main resonance in Eq.~32! occurs
when

kxB0

A4pr
5

v0

2
, ~33!

i.e., the external energy transforms into the energy of
harmonics withkx . The width of the resonant interval ma
be expressed as follows@29#:

U kxB0

A4pr
2

v0

2 U,U g

v0
U. ~34!

The resonant solution of Eq.~32! may be obtained in the
following analytical form@29#:

b̂y5b0 expF g

2v0
t GFcos

v0

2
t2sin

v0

2
t G

5A2b0e(g/2v0t) cosFv0

2
t1

p

4 G , ~35!

where b05b̂y(0). This solution describes the evolution o
the amplitudes of the Alfven waves polarized in theY0Z

plane with the initial conditionb̂x50, i.e., Ky(0)by(0)
1kzbz(0)50, and slow MHD waves polarized in any plan
satisfying the conditionkxbx(0)1Ky(0)by(0)1kzbz(0)50.
The waves withKy(0);kx.kz have maximal growth rates
The waves change the polarization due to the temporal
havior of the wave vector~22!. It generates theX component
of the Alfven waves and breaks down the classical condit
(B8B0)50. Two main reasons may be responsible for t
process: either Alfven waves lose their classical propertie
the periodic shear flows or they are partially turned into
slow MHD waves.

Equations~34! and ~35! show that the width of the reso
nant interval and the growth rate of the resonant waves
pend on the shear ratea of the velocity flow generated by
the external action. It has been known from the theory
mathematical pendulum that parametric resonance ta
place near the frequenciesnv0/2. However, the growth rate
is maximal atn51 and decreases quickly with the increa
of n. Therefore, only the harmonics with frequencyv0/2
have significant growth rates.
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Analytical solution~35! was found for the weakly inho
mogeneous external force. However, it is necessary to
vide the numerical simulation of the system~24!–~27! for
arbitrary shear rates.

A. Numerical simulation

For the purpose of simplification of the numerical ana
sis, it is convenient to work with the dimensionless equ
tions. Variables and functions have been made dimension
as follows:

b1[
bx

B0
, b2[

by

B0
, b3[

bz

B0
, v1[

iuxt0

R0
, v2[

iuyt0

R0
,

v3[
iuzt0

R0
, V12[Vxyt0 , k1[kxR0 , k2[kyR0 ,

k3[kzR0 , t[t/t0 , v[v0t0 , VA[
B0

A4pr
,

R0[VAt0 , a[
at0

2

r0
, ~36!

wheret0 is the period of an external force.
By assigning the corresponding initial polarization o

can look for the solutions of the Alfven and slow MH
waves separately. We suppose that initially Alfven waves
polarized in theY0Z plane and slow waves are polarize
near theX0Y plane.

Temporal evolution of components and total energy
resonant Alfven waves is presented in Fig. 1 for the sm
shear rate of the external action. The initial conditions ar

b1~0!50, b2~0!50.1, b3~0!50.3, v1~0!50,

v2~0!520.1, v3~0!520.3.

Initially, Alfven waves are polarized in theY0Z plane. It is
clearly seen that resonant harmonics have periods tha
twice as large as the period of the external action. This fig
illustrates that theY component of the magnetic field i
growing exponentially, whereas theZ component is not.
Note that the longitudinalX component is generated after th
initial phase. It is exponentially growing and breaks dow
the classical properties of the Alfven waves (B8B0)50. As a
consequence, the polarization plane turns towards the d
tion of the X0Y plane. As already noted, two possibilitie
may cause this process: either Alfven waves lose their c
sical properties or they partially transform into the slo
MHD waves in the forced medium. Consideration of t
compressibility will offer a clearer view on the understan
ing of this process. The normalized total spectral energy
the resonant harmonics in thek space is calculated using th
following equation:

E

E0
5

1

2
~ uv1u21uv2u21uv3u2!1~ ub1u21ub2u21ub3u2!,

~37!
o-

-
-
ss

re

f
ll

re
re

c-

s-

-
f

whereE05B0
2/4p, the first is the kinetic term and the secon

is the magnetic one. As is seen on the plot, the energy of
perturbations is exponentially growing. Consequently, it
safe to say that perturbations take the energy from the b
ground flow or, more properly, energy of the external for
transforms into the magnetic energy of the system.

Figure 2 illustrates the resonant solutions of the sl
MHD waves for the same shear rate as in Fig. 1. The ini
conditions are

b1~0!520.063, b2~0!50.1, b3~0!53,

v1~0!50.06, v2~0!520.1, v3~0!523.

The properties of slow waves are the same as the Alf
ones despite the fact that the polarization does not change
plane during the wave evolution.

To gain a complete understanding of the external actio
is useful to conduct the numerical simulations for the larg
shear ratea. Figures 3 and 4 show the solutions for th
Alfven and slow waves in the case whena is three times
larger compared to Figs. 1 and 2. The initial conditions a

b1~0!50, b2~0!50.1, b3~0!50.3, v1~0!50,

v2~0!520.1, v3~0!520.3

for Fig. 3 and

b1~0!50.92, b2~0!50.1, b3~0!53,

v1~0!520.92, v2~0!520.1, v3~0!523

FIG. 1. Temporal evolution of the velocity and magnetic fie
components and the normalized total energy of resonant Alf
waves. Time is normalized by the period of the external actiont0. It
is clearly seen that the period of waves is twice as large ast0. Note
the generation of theX component of the perturbations which wa
absent at the initial stage. Here,k153.14, K2(0)53.3, k3521.1,
a50.6, E05B0

2/4p.
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PRE 62 2749PARAMETRIC RESONANCE IN IDEAL . . .
for Fig. 4. Referring to these figures, the shear rate is a v
sensitive parameter for the resonance: the waves underg
strongest amplification in comparison to the above cases

Analytical and numerical study in the linear approxim
tion gives indications of the parametric resonance for
Alfven and slow MHD waves due to the external actio
Resonant harmonics grow exponentially in time, and con

FIG. 2. Temporal evolution of the velocity and magnetic fie
components and the normalized total energy of resonant slow M
waves. They behave similarly to the Alfven waves. Here,k1

53.14,K2(0)55.3, k3520.11,a50.6, E05B0
2/4p.

FIG. 3. Temporal evolution of the velocity and magnetic fie
components and the normalized total energy of resonant Alf
waves for the larger shear rate. Here,k153.14, K2(0)53.9, k3

521.3, a51.8, E05B0
2/4p. The strongest growth of the ampl

tudes is clearly seen.
ry
the

e
.
e-

quently nonlinear interaction cannot be neglected afte
lapse of time. The study of the complete nonlinear dynam
of the parametric resonance is an intricate problem. Hen
we provide only a formal nonlinear analysis and anticip
further development in the future.

B. Formal nonlinear analysis

The properties of nonlinear MHD waves have been st
ied intensively @30–33#. Generally, nonlinear interaction
generates the second and higher harmonics and leads t
frequency change of the initial resonant waves. Con
quently, the harmonics are forced out from resonance. Th
fore, the amplitudes of the resonant waves decrease, w
means that there is a redistribution of the energy of the re
nant harmonics to the higher ones. As a result the freque
of resonant waves in Eq.~32! becomes amplitude dependen

VA
2kx

2→VA
2kx

2~11bby
2!, ~38!

where b is the coefficient of nonlinearity. This additiona
term introduces a nonlinear term of the Schro¨dinger equation
type in the Eq.~32!. Using this formal substitution Mathieu’s
equation ~32!, which governs the linear parametric res
nance, leads to the equation governing the nonlinear dyn
ics of the system,

]2by

]t2 1@VA
2kx

2~11bby
2!1g cos~v0t !#by50. ~39!

Introducing the new functionV[]by /]t, Eq.~39! may be
expressed in the form of the following two differential equ
tions:

]by

]t
5V, ~40!

D

n

FIG. 4. Temporal evolution of the velocity and magnetic fie
components and the normalized total energy of resonant slow M
waves for the larger shear rate. Here,k153.14, K2(0)55.9, k3

521.3, a51.8, E05B0
2/4p.
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2750 PRE 62T. V. ZAQARASHVILI
]V

]t
52

v0
2

4 S 114
g

v0
2 cos~v0t ! Dby2b

v0
2

4
by

3 . ~41!

We look for the solution of the system~40! and ~41! in the
following form:

by52A~ t !cosFv0

2
t1w~ t !G . ~42!

Substitution of Eq.~42! into Eq. ~40! leads to the following
equation:

2Ȧ cosFv0

2
t1w~ t !G22AS v0

2
1ẇ D sinFv0

2
t1w~ t !G5V.

~43!

Equation~42! substitutes the two variablesA and w. Thus
one can choose an arbitrary relation between these new
ables. For simplicity we consider the following relation:

Ȧ cosFv0

2
t1w~ t !G2Aẇ sinFv0

2
t1w~ t !G50. ~44!

Then the expression forV takes the form

V52Av0 sinFv0

2
t1w~ t !G . ~45!

Substitution of Eq.~45! into Eq. ~41! and consequent aver
aging over the period leads to the following equations for
amplitude and phase:

Ȧ5
g

2v0
A sin 2w, ~46!

ẇ5
3bv0

4
A21

g

2v0
sin 2w. ~47!

Hence, integration of Eq.~46! allows us to get the following
equation for the amplitude:

A5C expS g

2v0
E sin 2wdtD , ~48!

whereC is a certain constant of integration. This equati
indicates that the amplitude of a resonant harmonic un
goes periodical growth and decay due to the nonlinear in
action, which is expressed by the first term on the right-ha
side of Eq.~47!. The rate and the period of the amplitud
variation depend ong, the coefficient of nonlinearityb, and
the initial amplitude of the magnetic field.

The numerical solution of the differential equations~40!
and~41! is presented in Fig. 5 with the following condition

bB0
250.005,

g

v0
2 50.05, V~0!50,

by~0!

B0
50.05.

Time is normalized by the period of the external forcet0.
Further inspection of Fig. 5 shows that the period of t
amplitude variation is much larger than the period of t
resonant waves.
ri-

e

r-
r-
d

e

Hence we can imagine the process of the external act
the force strengthens certain harmonics with appropr
wavelengths at the initial linear stage. When amplitudes
the harmonics reach the high values, the nonlinear inte
tion turns on and leads to the redistribution of the ene
from the resonant harmonics to the higher frequency on
Consequently, amplitudes of the resonant harmonics are
creased, creating again the conditions for the linear param
ric action. As a result, the repetitive amplification of the pe
turbations leads to the long-term modulation of th
amplitudes. An explicit example of this process is the no
linear oscillation of the mathematical pendulum with perio
cally varying lengths in theoretical mechanics. This mec
nism may be responsible for the explanation of the Maun
minimum in the solar activity.

III. DISCUSSION

Recently observed uncertainties of the magnetic field
havior in the Sun, binary stars, and galaxies set a stage
modifying the classical dynamo theory or developing n
theories. The bisymmetric structure of galactic magne
fields that closely follow spiral arms cannot be explained
classical turbulent dynamo theory. Therefore, an explana
of observations necessitates the consideration of den
waves@5,6#. These waves may be coupled with dynamo on
if their frequencies satisfy the relation 241. However, this
condition will only be satisfied fortuitously@34#. Further-
more, the turbulent dynamo theory encounters problems
ing to explain the solar magnetic cycles@28#. The different
character of the magnetic fields in binary stars also dema
further investigation@27#. As a consequence, an explanati
of the magnetic field behavior in many astrophysical obje
requires an overview of the amplification process.

The energy supply for the magnetic field in the classi

FIG. 5. Nonlinear modulation of the resonant Alfven waves a
plitudes. The period of the modulation is much larger than the
riod of the resonant waves. Here,bB0

250.005,g/v0
250.05, V(0)

50, by(0)/B050.05.
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dynamo theory is the energy of the turbulent motion in d
ferentially rotating objects. However, the role of extern
sources in the magnetic field amplification process is
completely understood.

An influence of an external electromagnetic force
plasma has been studied extensively@1#. A question arises:
what happens if a nonelectromagnetic external action ta
place? It is obvious that a nonelectromagnetic force can
directly affect magnetic waves. However, indirect influen
may be assumed in the form of a parametric action.

The nonelectromagnetic inhomogeneous periodic fo
directed along the magnetic field produces periodical sh
motions of plasma leaving field lines unaltered. The stabi
of such plasma is studied in the present paper. MHD eq
tions, written in the comoving coordinates of the unperturb
flow, lead to the Hill’s equation for an incompressible m
dium. In case of the weakly inhomogeneous external ac
the Hill’s equation turns into the Mathieu’s equation~32!,
which describes the parametric resonance in the theore
physics. As expected intuitively, periodical variation of t
velocity shear generates the Alfven waves with exponenti
growing amplitudes. Contrary to a single mathematical p
dulum, there are many wave modes in the plasma with
ferent frequencies and wavelengths satisfying the disper
relation of Alfven waves. As derived in Eq.~32!, parametric
resonance requires the condition

kxB0

A4pr
5

v0

2
.

This equation expresses the fact that the period of the r
nant harmonics is twice as large as the period of the exte
action. As a result, only harmonics with certain waveleng
satisfy the resonant conditions. To put it differently, the e
ternal force transmits the energy to the selected harmon
Amplitudes of these harmonics grow exponentially in tim
~see Figs. 1–4!. The growth rate and the resonant interv
depend on the velocity shear rate generated by the exte
action.

As already noted, the wave vector of Alfven waves u
dergoes a periodic drift ink space. As a result, the plane
the polarization undergoes a periodical variation which g
erates the longitudinal component perturbing the class
condition (B8B0)50. Two main mechanisms can be respo
sible for this phenomenon: either Alfven waves are modifi
in the forced medium or they partially transform into slo
MHD waves. We cannot prefer one of these two possibilit
in an incompressible limit. It requires a study of a compre
ible medium.

The exponential growth of wave amplitudes indicates t
the linear approximation loses its validity soon. Then a f
mal non-linear analysis shows periodical growth and de
of the resonant harmonics. This amplitude modulation i
result of the nonlinear interaction between resonant harm
ics that produces overtones of a second and higher or
2v,3v, . . . . As aresult, the energy of the resonant harmo
ics is redistributed between the energies of higher-order
monics. Consequently, amplitudes of the resonant harmo
are reduced. They became smaller and the linear mecha
of parametric amplification turns on again and leads to
perturbation growth. The period of the modulation is larg
-
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than the period of the resonant harmonics and depends o
velocity shear rate generated by the external force and
coefficient of the nonlinearity~see Fig. 5!.

The mechanism of magnetic field amplification presen
here may be applied to many astrophysical objects.
present several examples of external action, which can g
erate parametric resonance.

A. The Sun

It has been shown that gravitational action of the plan
correlates with the solar activity cycles@35#. However, there
was no physical mechanism explaining such correlation.
cently, Zaqarashvili@3# has shown that in the case of ellipt
cal motion of the Sun about the mass center of the s
system~which is the result of the planetary gravity!, nonin-
ertial forcerr3V̇ influences the solar plasma. Angular v
locity V is the periodic function of time for eccentric orbits
Therefore, this force is periodic and inhomogeneous. He
it generates periodic shear of the solar internal rotation w
the period of;11 years~it corresponds to the period o
Jupiter, which is the biggest planet in the solar syste!.
Then, the parametric amplification of Alfven waves with th
period of 22 years occurs in the solar interior. This resul
very intriguing because the solar magnetic field actually
the same period. Nonlinear long-term modulation of amp
tudes found in the present paper may be responsible for
generation of the Maunder minimum in the solar magne
activity. This theory may be used in searching for extraso
planets as well: if a star exhibits a periodical variation in
chromospheric activity then one can suggest the existenc
the planet with the same orbital period.

B. Binary stars

Several years ago, Schrijver and Zwaan@27# have shown
based on the observational data that the chromospheric
tivity in binary systems is substantially higher in comparis
to the single stars of the same spectral classes and rot
periods. They have concluded that gravity of a compan
affects the differential rotation of a primary star and may
responsible for a so-called overactivity. However, they ha
not proposed any physical mechanism explaining
strengthening of the magnetic field. In this regard the pa
metric resonance presented in this paper offers the gre
promise. Any little asymmetry in a binary system~eccentric
orbit or inclination of the rotation axis! causes a periodic
shearing of the internal rotation and thus amplification of
magnetic field.

C. Galaxies

It seems reasonable to expect that the parametric amp
cation of the magnetic field can occur in interacting galaxi
This suggestion is supported by the observed fact that in
acting galaxies exhibit rather strong magnetic fields@36–38#.
However, uncertainties in the measurements of the orb
parameters complicate the evaluation of the growth rate
magnetic fields. On the other hand, magnetic field amplifi
tion may occur at the expense of density waves in sp
galaxies. Density waves that propagate in spiral galaxies
duce a periodic shear in the galactic rotation because of
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angular momentum transfer. Considering the spiral den
waves as an external force which produces periodic sh
motions, one can find the parametric amplification of Alfv
waves. In other words, we can consider the density wa
which is a consequence of gravitational and rotational
tions, in a parametric form in ideal MHD equations. As
result, Alfven waves grow exponentially. It can be said w
confidence that the energy of density waves is transform
into the energy of Alfven waves. In other words, waves
one type change the properties of a medium and offer a c
nel for the transmission of energy to the waves of anot
type. Indeed, this phenomenon may be described in
framework of the linear theory, despite its intrinsic nonline
character. We believe in the development of this method
the future. Let us evaluate the growth rate of perturbation
this case. Density waves cause the following shear in
rotation of the galaxies:

Vx5
a

rvd
sin~vdt !y,

wherevd and a are the frequency and the strength of t
density waves. TheX axis is directed along the rotation o
the galaxy and theY axis has radial direction. The growt
rate depends on the amplitude of density waves. The pe
of density waves is considered to be equal to the period
the galactic rotation@39#. Taking a/r;vd

2 during the life-
time of the Milky Way, which corresponds to;50 rotations,
amplitudes of the Alfven waves are amplified by the follo
ing factor:'1021. Despite a very rough estimation, witho
taking into account nonlinear interactions, ambipoliar diff
sion, and other damping processes, an extreme growth
gests the necessity of a further detailed study.
n
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IV. CONCLUSION

A mechanism of a magnetic field amplification is outline
and discussed within the ideal MHD theory. It is shown th
an external nonelectromagnetic inhomogeneous perio
force is able to generate resonant Alfven waves in a mag
tized medium. During the process of the parametric re
nance energy of the external nonelectromagnetic driv
force transforms to the energy of the generated Alfven w
harmonics with definite wavelengths. The period of the re
nant harmonic is twice as large as the period of the exte
force. The growth rate of the Alfven waves depends on
shear rate of the flow velocity, which originates from th
external action. Furthermore, the nonlinear interaction
tween the resonant harmonics produces long-term mod
tion of their amplitudes.

The presented mechanism of energy transformation fr
an external nonelectromagnetic force into magnetic osc
tions of the system can be used in the understanding of
physical basis of gravitational action on a magnetized m
dium. The possible application of this mechanism in the
planation of the magnetic field behavior in the Sun, bina
stars, and spiral galaxies is briefly discussed.

Future consideration of the compressibility will provide
more detailed insight into the nature of this phenomenon
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